
ANNUAL JOURNAL OF ELECTRONICS, 2009, ISSN 1313-1842

64

Minimum Cut Algorithm for Hypergraph

Razmik Alaverdyan

Abstract - The algorithm for computing global minimum
cut in hypergraph is presented. This algorithm is a non-flow
based algorithm. Since the netlist of a circuit can be modeled
naturally as a hypergraph, this opens the opportunity for
finding very high quality solutions for the circuit partitioning
problem.

Keywords – Hypergraph, circuit partitioning, minimum cut,
algorithm, tightly connected

I. INTRODUCTION

 Partitioning plays a central role in VLSI system design
[1]. Partitioning tools are required for dividing system into
smaller and more manageable subsystems. A good
partitioning should limit the number of signal nets between
different subsystems to ensure high system performance,
because signal delays are different between same and the
other subsystems. So min-cut partitioning that minimizes
the number of interconnections between different
subsystems is desired.
 A system can be partitioned into smaller components by
recursively dividing each big component into two
components. Thus solving the two-way partitioning
problem provides the basis for solving the general
partitioning problem. In this paper, we focus our attention
on the two-way partitioning problem.
 As a net can connect multiple modules, the natural
representation for a circuit netlist is a hypergraph where the
nodes correspond to the modules and the edges correspond
to the interconnections. And the cost of each edge reflects
the cost of the corresponding interconnection. There are
many algorithms for solving the minimum cut problem for
graphs known in the literature [1]. Most of these algorithms
rely on maximum flow computations motivated by the
max-flow min-cut theorem (the max-flow min-cut theorem
states the dual relationship between a maximum flow
between two nodes s and t and a minimum ts − cut that
separates s and t) by Ford and Fulkerson [2]. Several
researchers [3, 4, 5] presented some algorithms for
computing minimum cut without using any flow
computation. The fastest algorithms known today are by
Nagamochi and Ibaraki [4], and Stoer and Wagner [5].
Their algorithms have a running time of)log(2 nnmnO +
where m is the number of edges and n is the number of
nodes in the graph. These algorithms are designed for
finding minimum cuts in graphs but not in hypergraphs.
Though some researchers have tried to find ways to model
a hypergraph with a graph, Ihler et al. [6] proved that there
is no perfect transformation to model hypergraphs by
graphs with the same mincut properties. That means any
strategy that relies on hypergraph to graph transformation
and the use of a minimum cut algorithm for graphs can at
best find approximate solutions to an optimal partition of
the hypergraph.

 The hypergraph minimum cut problem was considered
in [7, 8]. Hu and Moreder first considered the problem in
[7]. They modeled each net x as a star node (Figure 1) in a
node-capacitated flow network where each star node has a
capacity equals to the cost of the corresponding net and all
other nodes have infinite capacity. They presented a simple
flow augmenting type algorithm to compute the minimum
node separator of the network. Since any non-star node has
infinite capacity, the minimum node separator cannot
contain any non-star node. Thus a minimum node separator
must be a subset of the star nodes which corresponds to the
set of nets in a minimum cut of the hypergraph.

However, the node-capacitated flow network can be readily
transformed into an arc-capacitated network using a
technique due to Lawler [9]. Figure 2(a) shows how the
star in Figure 1 is transformed. After transforming to an
arc-capacitated network, more efficient flow algorithms
can be applied. Yang and Wong [8] gave a more compact
transformation (Figure 2(b)) that uses less nodes and edges.

 The fastest known algorithms for computing a minimum

ts − cut that separates two fixed nodes in a network are
flow-based algorithms which takes),(mn ′′Ω time where
n′ and m′ are the numbers of nodes and arcs in the
network. Using the transformation of [8], the network
constructed for computing a hypergraph minimum cut has

mn 2+ nodes and pm 2+ arcs where m , n and p are
the numbers of edges, nodes, and terminals in the
hypergraph. Computing a hypergraph minimum ts − cut
using the flow-based approach takes)2)(2((pmmn ++Ω
time. Note that a global minimum cut can be found by
computing 1−n minimum ts − cuts.
 In this paper we present an algorithm which is not flow
based and it computes a global minimum cut in a
hypergraph. The algorithm runs in)log(2 nnnpO + time
and it is a fast hypergraph minimum cut algorithm. Note

u

v

w

x

Figure 1: A net x modeled as a star node connecting
all modules in the net.

Figure 2: (a) Transforming a star (c is the cost of
star node x). (b) A more compact transformation.

∞
v2

∞
∞

w2 ∞
∞

x2 ∞

∞

x1

c
u2

∞∞

(a)
c v1

w1
∞

∞ ∞
u1

v

w∞

∞
u

(b)

c∞
x2x1

∞

∞
∞

R. Alaverdyan is with the Department of Support, Synopsys
Armenia CJSC – Yerevan, 41 Arshakunyats ave., 0026 Yerevan,
Armenia, e-mail: arazmik@mail.ru

ANNUAL JOURNAL OF ELECTRONICS, 2009

65

that the number of edges m can be exponential in the
number of nodes n in a hypergraph, so computing a global
minimum cut using our algorithm is even faster than just
computing one minimum ts − cut by the flow-based
approach which takes)(mpΩ time. Our algorithm is a non-
trivial extension of the result by Stoer and Wagner [5]
which works for graphs only.

II. PRELIMINARIES

 A hypergraph),(EVH = is defined by its node set
V and edge set E . While the edges of a graph connect
exactly two nodes each, the edges of a hypergraph can
connect two or more nodes each (Figure 3). The nodes
connected by an edge e are called the terminals of e .

A cut),(XXC = is a partition of the set of nodes into
two non-empty sets X and XVX −= . The size of a cut

),(XXC = is the total cost of all edges that have
terminals in both X and X , and is denoted by)(Cω . An
edge that has terminals in both X and X is called a cut
edge. For example, }),,{},,({ fdbcaC = is a cut of the
hypergraph in Figure 4(a), and 321)(=+=Cω .

 A global minimum cut or simply minimum cut of a
hypergraph H is a cut of H that has the smallest cut size
among all the possible cuts of H . A minimum ts − cut is
a cut among the set of cuts that separate nodes s and t
(i.e., Xs∈ and, Xt ∈ , or vice versa) with the smallest
cut size. Referring to Figure 4(b), cut (},,,{},{ fdcab) is a
global minimum cut and has a size of 1. Referring to Figure
4(c), cut (},,{},,{ fdcba) is a minimum ts − cut for as =
and ct = , and has a size of 2.

III. THE ALGORITHM

 The algorithm for computing a minimum cut of a
hypergraph is based on the following observation. In case

of having procedure P that can compute a minimum ts −
cut for some nodes s and t quickly for any hypergraph, a
global minimum cut can be computed quickly by using the
procedure 1−n times where n is the number of nodes in
the hypergraph.
 A global minimum cut can be found for a hypergraph
with two nodes by applying procedure P once because a
minimum ts − cut is also a global minimum cut for a
hypergraph with only two nodes. If a global minimum cut
for a hypergraph with k nodes is computed, a global
minimum cut for a hypergraph H with 1+k nodes can be
computed using one more application of procedure P .
Because the smaller of a minimum ts − cut of H and a
minimum cut of H with nodes s and t on the same side
must be a global minimum cut of H (recall that a
minimum ts − cut is a minimum cut with nodes s and t
on opposite sides). So, a global minimum cut for
hypergraph with 1+k nodes can be computed by finding a
minimum ts − cut using procedure P , then computing a
global minimum cut of the reduced hypergraph with nodes
s and t merged, and finally picking the smaller of the
two.
 So, the main question is: how can a minimum ts − cut
for some nodes s and t be computed quickly for any
hypergraph? Note that the choice of s and t that are easy
to compute a minimum ts − cut efficiently is free. It is
shown in [5] how a minimum ts − cut for some nodes s
and t can be computed quickly in a graph, here it is shown
how it can be done in a hypergraph.
 A node v is tightly connected to a node subset A if
there is an edge that has node v as a terminal and has all
other terminals in A , but no terminals in }){/(vAV ∪ . For
example, for the hypergraph in Figure 5, node d is tightly
connected to set },,{ cba because of edge },,{ bad , and
node g is tightly connected to set },,{ cba because of edge

},{ cg . But node f is not tightly connected to set },,{ cba
(note that edge },,{ gcf does not make f tightly
connected to set },,{ cba). For any VA ⊂ ,),(vAω is
defined to be the sum of the weights of those edges that
have node v as one of the terminals and have all other
terminals in A , but no terminals in }){/(vAV ∪ . (Note
that),(vAω is zero if v is not tightly connected to A .)
The node most tightly connected to a node subset A is
defined as a node Av∉ such that),(vAω is maximum.
The major difference between our hypergraph minimum
cut algorithm and the graph minimum cut algorithm in [5]
is in the definitions of),(vAω and the node most tightly
connected to a node subset A . The following algorithm
must find a minimum ts − cut for any hypergraph.
 Some terminologies needed to prove that our algorithm
correctly finds a minimum ts − cut in the input
hypergraph H are introduced. A sequence }{ ia is defined
from the set of nodes in H according to the order they are
added to A by the algorithm, i.e., =ia the i -th node
added to A . Hence, 1−= nas and nat = where n is the
number of nodes in H .)(vpred is used to denote the

c

a

d

b

f

Figure 3: A hypergraph.

Figure 4: (a) A cut. (b) A minimum cut. (c) A
minimum s-t cut for s = a and t = c

c

a

d

b

f

(a) 1

2

4

c

a

d

b

f

(b)
1

2

4

4

1

c

a

d

b

f

(c)

2

ANNUAL JOURNAL OF ELECTRONICS, 2009

66

node immediately preceding node v in the sequence. And
vA is used to denote the set of nodes in the prefix sequence

()(,...,,, 321 vpredaaa).

 Fast Minimum ts − Cut Algorithm
Input: A Hypergraph H .
Output: A minimum ts − cut ∗C of H and the choice of
s and t .
=:x an arbitrary node in ;H

};{: xA =
while VA ≠ do
=:v node in AV / most tightly connected to A (i.e.

),(vAω is maximum);
};{: vAA ∪=

od; /*/* VA =
=:s 2nd last node added to ;A
=:t last node added to ;A

);},/{(: ttAC =∗

 Given a ts − cut C , v is an active node if nodes v and

)(vpred are on opposite sides of the cut C . Let vC
denote the set of edges whose terminals are all in }{vAv ∪
that are cut by C .
 It is clear that the computed cut)},/{(:* ttVC = is a

ts − cut of hypergraph H . It remains to show that
)()},/{(CttV ωω ≤ for any ts − cut C of H where

1−= nas and nat = .
 Consider an arbitrary ts − cut C of H where 1−= nas
and nat = , we want to show that)()},/{(CttV ωω ≤ .
Since }/{tVAt = and CCt = , it is equivalent to prove that

)(),(tt CtA ωω ≤ . We will prove a more general result in
Lemma 1, which says that)(),(vv CvA ωω ≤ for any active
node v . Note that t is an active node because svprev =)(,
and by assumption C is a ts − cut, so s and t are on
opposite sides of C . Thus we are done if we can prove the
lemma.
 Lemma 1: For any ts − cut C of hypergraph H where

1−= nas and nat = , we have)(),(vv CvA ωω ≤ for every
active node v in the sequence }{ ia .
 Proof: Lemma will be proved by induction. Suppose we
have a fixed ts − cut C where 1−= nas and nat = .

 Base case: If v is the first active node, then all nodes in
vA must be on one side of the cut C , and v must be on

the other side. So, any edge that has v as one of its
terminals and has all other terminals in vA must be cut by
C and hence in vC . Thus we have)(),(vv CvA ωω ≤ .
 Inductive step: Suppose that the statement holds for
active node u , and v is the next active node after u . We
will show that the statement also holds for active node v .
By the definition of),(vAvω , it can be written as the sum
of these terms.

),/,(),/(),(),(vAAAvAAvAvA uvuuvuv ωωωω ++= (1)

where),/,(vAAA uvuω is the total cost of all edges with v
as a terminal that also have terminals in both uA and

uv AA / , but not in }{/(vAV v ∪ . As u is the node most
tightly connected to uA , we have),(),(uAvA uu ωω ≤ .
And by the induction hypothesis,)(),(uu CuA ωω ≤ . So,

≤++=),/,(),/(),(),(vAAAvAAvAvA uvuuvuv ωωωω
),,(),/()(vAAvAAC vuuvu ωωω ++≤ (2)

 Because all nodes between u and v in the sequence are
non-active nodes by the assumption, all nodes in uv AA /
must be on one side of the C , while v must be on the
other side as it is active. So any edge with v as a terminal
and have at least one terminal in uv AA / must be cut by
C . Hence, any edge counted in),/(vAA uvω or

),/,(vAAA uvuω must belong to vC . And as uC is a
subset of vC , any edge counted in)(uCω must belong to

vC . Finally, notice that the set of edges counted in)(uCω ,
the set of edges counted in),/(vAA uvω , and the set of
edges counted in),/,(vAAA uvuω are mutually disjoint by
their definitions. So, we have

≤++≤),/,(),/()(),(vAAAvAACvA uvuuvuu ωωωω
)(uCω≤ . From the above, we have)(),(vu CvA ωω ≤ for

any active node v with respect to the cut C . As C can be
any arbitrary ts − cut of H , the lemma is proved.
 We will illustrate how the fast minimum ts − cut
algorithm works with an example. Consider the hypergraph
in Figure 6. Suppose node a is picked as the arbitrary node
to put into A first. Then A becomes }{a , and the node
most tightly connected to A is b since 2)},({ =baω
while 1)},({ =eaω and 0)},({ =vaω for any other node
v . So the second node added to A is b and A becomes

},{ ba . Now, there are two nodes most tightly connected to
A , namely, nodes c and d , since

1)},,({,3)},,({)},,({ === ebadbacba ωωω , and
0)},,({ =fbaω . Suppose we choose to add node c into

A , then A becomes },,{ cba . It can be checked that d is
the node most tightly connected to },,{ cba , hence node d
is added to A next, followed by node e , and finally node

Figure 5: Both nodes d and g are tightly connected to
A={a,b,c} but node f is not.

b

a

c

d

f

g

A

ANNUAL JOURNAL OF ELECTRONICS, 2009

67

f . So, we get }){},,,,,({* fedcbaC = , es = and ft = .

The cut size of *C is 3. It can be checked that *C is indeed
a minimum ts − cut for es = and ft = .

 The global minimum cut of the hypergraph in Figure 6 is
found by five minimum ts − cut computations. Figure 7(a)
shows the cut computed by the fast minimum ts − cut
algorithm assuming the nodes are added to A in the order

fedcba ,,,,, . The cut size is 3 and the cut separates e and
f . So nodes e and f are merged before the second

minimum ts − cut computation. Figure 7(b) shows the cut
computed by the fast minimum ts − cut algorithm
assuming the nodes are added to A in the order

cdbaef ,,,, . The cut size is 4 and the cut separates d and
c . So nodes d and c are merged before the third
minimum ts − cut computation. Figure 7(c) shows the cut
computed by the fast minimum ts − cut algorithm
assuming the nodes are added to A in the order

efabcd ,,, . The cut size is 7 and the cut separates a and
ef . So nodes a and ef are merged before the fourth
minimum ts − cut computation. Figure 7(d) shows the cut
computed by the fast minimum ts − cut algorithm
assuming the nodes are added to A in the order cdbaef ,, .
The cut size is 7 and the cut separates b and cd . So nodes
b and cd are merged before the fifth minimum ts − cut
computation. Figure 7(e) shows the cut. And the cut size is
3. The minimum of the five cuts computed above is a
global minimum cut. In this example, the first and the fifth
computed cuts are two different global minimum cuts.

IV. IMPLEMENTATION AND COMPLEXITY

 Let n be the number of nodes in hypergraph H . Let p
be the total number of terminals in all the edges of H . The

fast minimum ts − cut algorithm can be implemented to
run in)log(nnpO + time. In the fast minimum ts − cut
algorithm, we need to keep track of the value of),(vAω
for all node v not in the current set A . And we have to
find the node v not in the current A with the maximum

),(vAω value quickly. We can put the nodes into a priority
queue using the value of),(vAω as the key of node v .
When we add a node v to A , we will remove it from the
priority queue, and update),(uAω for any node u that
becomes the last terminal of an edge to remain outside of
A (i.e., u and v are terminals of the same edge e and

they are the last two terminals of e yet to put into A). We
can identify such last node of an edge by keeping a counter
for each edge. The value of the counter of an edge e is set
to the number of terminals of the edge initially, and is
decremented by 1 each time a terminal of e is added to A .
Every time the counter for an edge e becomes 1, we scan
all the terminals of e to find the last remaining node u
outside A and increase the value of),(uAω by)(eω .
During the whole algorithm the total time spent for
decrementing the counters and scanning when a counter
becomes 1 is)(pO . And there are m IncreaseKey
operations where m is the number of edges in H , and n
ExtractMax operation. If we implement the priority queue
using Fibonacci heaps, the amortized times for performing
IncreaseKey and ExtractMax are)1(O and)(log nO ,
respectively. Hence, the total running time of the fast
minimum ts − cut algorithm is

)log()log(nnpOnnmpO +=++ .
 We can compute a global minimum cut in a hypergraph
in)log(2 nnnpO + time by applying the fast minimum

ts − cut algorithm 1−n times. For VLSI circuits, usually
cnp = for some c around 3 and 4. So the time becomes

)log(2 nnO .

V. CONCLUSION

 Because of the importance of the hypergraph minimum
cut problem in finding good partitions for VLSI circuits,
many researchers have studied this problem. Previously,
the most efficient approach to find a minimum cut in a
hypergraph is to transform the hypergraph into a flow
network and then apply a flow-based algorithm on the
network. However, in this paper we presented a fast non-
flow based approach to compute a minimum cut in the
hypergraph directly. Our algorithm is a fast hypergraph
minimum cut algorithm.
 Finding a global minimum cut in a hypergraph is an
important step towards finding better solutions for the
complicated system partitioning problem. If the minimum
cut is not balanced, we can use a repeated cut process as in
[8] to grow or shrink a partition to the desired size without
increasing the cut value too much. Yang and Wong [8]
have shown that this technique works very well for finding
balanced ts − cuts in practice, so one can only expect to
find better partitions when it is applied together with our

Figure 6: A hypergraph.

1
b a c

d f e

3
3

2

1

3

Figure 7: Computing a global minimum cut.

(a) 1
b a c

d f e

3
3

2

1

3

b cd

aef

6
2

1 (d)
bcd

aef

2+1

(e)

b a c

def

3
3

1 2

1+3

(b)

cd b a

ef

3+3

1
2

4

(c)

ANNUAL JOURNAL OF ELECTRONICS, 2009

68

algorithm since we do not require the use of a fixed pairs of
nodes s and t .

REFERENCES

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows:
Theory, Algorithms, and Applications, Prentice Hall, 1993.
[2] J.R. Ford and D.R. Fulkerson, Flows in Networks, Princeton
University Press, 1962.
[3] D.R. Karger and C. Stein, A New Approach to the Minimum
Cut Problem, in Journal of the ACM, July 1996, Vol. 43, No 4,
pp. 601- 640.
[4] H. Nagamochi and T. Ibaraki, Computing Edge-Connectivity
in Multigraphs and Capacitated Graphs, in SIAM Journal of
Discrete Mathematics, 1992, Vol. 5, No 1, pp. 54-66.
[5] M. Stoer and F. Wagner, A Simple Min-Cut Algorithm, in
Journal of the ACM, July 1997, Vol. 44, No 4, pp. 585-591.
[6] E. Ihler, D. Wagner, and F. Wagner, Modeling Hypergraphs
by Graphs with the Same Mincut Properties, in Information
Processing Letters, March 1993, Vol. 45, No 4, pp. 171-175.
[7] T.C. Hu and K. Moerder, Multiterminal Flows in a
Hypergraph, in VLSI Circuit Layout: Theory and Design, IEEE
Press, pp. 87- 93, 1985.
[8] H. Yang and D.F. Wong, Efficient Network Flow based Min-
Cut Balanced Partitioning, in Proc. of the IEEE/ACM Int’l Conf.
on Computer-Aided Design, pp. 50-55, 1994.
[9] E.L. Lawler, Combinatorial Optimization: Networks and
Matroids, Hot, Rinehart, &Winston, New York, 1976.
[10] T. Lengauer, Combinatorial Algorithms for Integrated
Circuit Layout, Wiley-Teubner, 1990.
[11] B. Preas and M. Lorenzetti, Physical Design Automation of
VLSI Systems, Benjamin/Cummings, 1988.
[12] C.J. Alpert and A.B. Kahng, Recent Directions in Netlist
Partitioning: A Survey, in Integration: the VLSI Journal, 1995,
Vol. 19, No 1-2, pp. 1-81.
[13] R. Gomory and T.C. Hu, Multi-Terminal Network Flows, in
Journal of SIAM, 1961, Vol. 9, No 41961, pp. 551-570.

