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Minimum Cut Algorithm for Hypergraph 
 

Razmik Alaverdyan  
 

Abstract - The algorithm for computing global minimum 
cut in hypergraph is presented. This algorithm is a non-flow 
based algorithm. Since the netlist of a circuit can be modeled 
naturally as a hypergraph, this opens the opportunity for 
finding very high quality solutions for the circuit partitioning 
problem. 
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I. INTRODUCTION 

 
 Partitioning plays a central role in VLSI system design 
[1]. Partitioning tools are required for dividing system into 
smaller and more manageable subsystems. A good 
partitioning should limit the number of signal nets between 
different subsystems to ensure high system performance, 
because signal delays are different between same and the 
other subsystems. So min-cut partitioning that minimizes 
the number of interconnections between different 
subsystems is desired. 
 A system can be partitioned into smaller components by 
recursively dividing each big component into two 
components. Thus solving the two-way partitioning 
problem provides the basis for solving the general 
partitioning problem. In this paper, we focus our attention 
on the two-way partitioning problem. 
 As a net can connect multiple modules, the natural 
representation for a circuit netlist is a hypergraph where the 
nodes correspond to the modules and the edges correspond 
to the interconnections. And the cost of each edge reflects 
the cost of the corresponding interconnection. There are 
many algorithms for solving the minimum cut problem for 
graphs known in the literature [1]. Most of these algorithms 
rely on maximum flow computations motivated by the 
max-flow min-cut theorem (the max-flow min-cut theorem 
states the dual relationship between a maximum flow 
between two nodes s  and t  and a minimum ts −  cut that 
separates s  and t ) by Ford and Fulkerson [2]. Several 
researchers [3, 4, 5] presented some algorithms for 
computing minimum cut without using any flow 
computation. The fastest algorithms known today are by 
Nagamochi and Ibaraki [4], and Stoer and Wagner [5]. 
Their algorithms have a running time of )log( 2 nnmnO +  
where m  is the number of edges and n  is the number of 
nodes in the graph. These algorithms are designed for 
finding minimum cuts in graphs but not in hypergraphs. 
Though some researchers have tried to find ways to model 
a hypergraph with a graph, Ihler et al. [6] proved that there 
is no perfect transformation to model hypergraphs by 
graphs with the same mincut properties. That means any 
strategy that relies on hypergraph to graph transformation 
and the use of a minimum cut algorithm for graphs can at 
best find approximate solutions to an optimal partition of 
the hypergraph. 

 The hypergraph minimum cut problem was considered 
in [7, 8]. Hu and Moreder first considered the problem in 
[7]. They modeled each net x  as a star node (Figure 1) in a 
node-capacitated flow network where each star node has a 
capacity equals to the cost of the corresponding net and all 
other nodes have infinite capacity. They presented a simple 
flow augmenting type algorithm to compute the minimum 
node separator of the network. Since any non-star node has 
infinite capacity, the minimum node separator cannot 
contain any non-star node. Thus a minimum node separator 
must be a subset of the star nodes which corresponds to the 
set of nets in a minimum cut of the hypergraph. 
 
 
 
 
 
 
 
 
However, the node-capacitated flow network can be readily 
transformed into an arc-capacitated network using a 
technique due to Lawler [9]. Figure 2(a) shows how the 
star in Figure 1 is transformed. After transforming to an 
arc-capacitated network, more efficient flow algorithms 
can be applied. Yang and Wong [8] gave a more compact 
transformation (Figure 2(b)) that uses less nodes and edges. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The fastest known algorithms for computing a minimum 

ts −  cut that separates two fixed nodes in a network are 
flow-based algorithms which takes ),( mn ′′Ω  time where 
n′  and m′  are the numbers of nodes and arcs in the 
network. Using the transformation of [8], the network 
constructed for computing a hypergraph minimum cut has 

mn 2+  nodes and pm 2+  arcs where m , n  and p  are 
the numbers of edges, nodes, and terminals in the 
hypergraph. Computing a hypergraph minimum ts −  cut 
using the flow-based approach takes )2)(2(( pmmn ++Ω  
time. Note that a global minimum cut can be found by 
computing 1−n  minimum ts −  cuts. 
 In this paper we present an algorithm which is not flow 
based and it computes a global minimum cut in a 
hypergraph. The algorithm runs in )log( 2 nnnpO +  time 
and it is a fast hypergraph minimum cut algorithm. Note 
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Figure 1: A net x modeled as a star node connecting 
all modules in the net. 

Figure 2: (a) Transforming a star (c is the cost of 
star node x). (b) A more compact transformation. 
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that the number of edges m  can be exponential in the 
number of nodes n  in a hypergraph, so computing a global 
minimum cut using our algorithm is even faster than just 
computing one minimum ts −  cut by the flow-based 
approach which takes )(mpΩ  time. Our algorithm is a non-
trivial extension of the result by Stoer and Wagner [5] 
which works for graphs only. 
 

II. PRELIMINARIES 
 
 A hypergraph ),( EVH =  is defined by its node set 
V and edge set E . While the edges of a graph connect 
exactly two nodes each, the edges of a hypergraph can 
connect two or more nodes each (Figure 3). The nodes 
connected by an edge e  are called the terminals of e . 
 
 
 
 
 
 
 
 

A cut ),( XXC = is a partition of the set of nodes into 
two non-empty sets X  and XVX −= . The size of a cut 

),( XXC =  is the total cost of all edges that have 
terminals in both X  and X , and is denoted by )(Cω . An 
edge that has terminals in both X  and X  is called a cut 
edge. For example, }),,{},,({ fdbcaC =  is a cut of the 
hypergraph in Figure 4(a), and 321)( =+=Cω . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 A global minimum cut or simply minimum cut of a 
hypergraph H  is a cut of H  that has the smallest cut size 
among all the possible cuts of H . A minimum ts −  cut is 
a cut among the set of cuts that separate nodes s  and t  
(i.e., Xs∈  and, Xt ∈ , or vice versa) with the smallest 
cut size. Referring to Figure 4(b), cut ( },,,{},{ fdcab ) is a 
global minimum cut and has a size of 1. Referring to Figure 
4(c), cut ( },,{},,{ fdcba ) is a minimum ts −  cut for as =  
and ct = , and has a size of 2. 
 

III. THE ALGORITHM 
 
 The algorithm for computing a minimum cut of a 
hypergraph is based on the following observation. In case 

of having procedure P  that can compute a minimum ts −  
cut for some nodes s  and t  quickly for any hypergraph, a 
global minimum cut can be computed quickly by using the 
procedure 1−n  times where n  is the number of nodes in 
the hypergraph. 
 A global minimum cut can be found for a hypergraph 
with two nodes by applying procedure P  once because a 
minimum ts −  cut is also a global minimum cut for a 
hypergraph with only two nodes. If a global minimum cut 
for a hypergraph with k  nodes is computed, a global 
minimum cut for a hypergraph H  with 1+k  nodes can be 
computed using one more application of procedure P . 
Because the smaller of a minimum ts −  cut of H  and a 
minimum cut of H  with nodes s  and t  on the same side 
must be a global minimum cut of H (recall that a 
minimum ts −  cut is a minimum cut with nodes s  and t  
on opposite sides). So, a global minimum cut for 
hypergraph with 1+k  nodes can be computed by finding a 
minimum ts −  cut using procedure P , then computing a 
global minimum cut of the reduced hypergraph with nodes 
s  and t  merged, and finally picking the smaller of the 
two. 
 So, the main question is: how can a minimum ts −  cut 
for some nodes s  and t  be computed quickly for any 
hypergraph? Note that the choice of s  and t  that are easy 
to compute a minimum ts −  cut efficiently is free. It is 
shown in [5] how a minimum ts −  cut for some nodes s  
and t  can be computed quickly in a graph, here it is shown 
how it can be done in a hypergraph. 
 A node v  is tightly connected to a node subset A  if 
there is an edge that has node v  as a terminal and has all 
other terminals in A , but no terminals in }){/( vAV ∪ . For 
example, for the hypergraph in Figure 5, node d  is tightly 
connected to set },,{ cba  because of edge },,{ bad , and 
node g  is tightly connected to set },,{ cba  because of edge 

},{ cg . But node f  is not tightly connected to set },,{ cba  
(note that edge },,{ gcf  does not make f  tightly 
connected to set },,{ cba ). For any VA ⊂ , ),( vAω  is 
defined  to be the sum of the weights of those edges that 
have node v  as one of the terminals and have all other 
terminals in A , but no terminals in }){/( vAV ∪ . (Note 
that ),( vAω  is zero if v  is not tightly connected to A .) 
The node most tightly connected to a node subset A  is 
defined as a node Av∉  such that ),( vAω  is maximum. 
The major difference between our hypergraph minimum 
cut algorithm and the graph minimum cut algorithm in [5] 
is in the definitions of ),( vAω  and the node most tightly 
connected to a node subset A . The following algorithm 
must find a minimum ts −  cut for any hypergraph. 
 Some terminologies needed to prove that our algorithm 
correctly finds a minimum ts −  cut in the input 
hypergraph H are introduced. A sequence }{ ia  is defined 
from the set of nodes in H  according to the order they are 
added to A  by the algorithm, i.e., =ia  the i -th node 
added to A . Hence, 1−= nas  and nat =  where n  is the 
number of nodes in H . )(vpred  is used to denote the 
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Figure 3: A hypergraph. 

Figure 4: (a) A cut. (b) A minimum cut. (c) A 
minimum s-t cut for s = a and t = c 
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node immediately preceding node v  in the sequence. And 
vA  is used to denote the set of nodes in the prefix sequence 

( )(,...,,, 321 vpredaaa ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fast Minimum ts −  Cut Algorithm 
Input: A Hypergraph H . 
Output: A minimum ts −  cut ∗C  of H  and the choice of 
s  and t . 
=:x  an arbitrary node in ;H  

};{: xA =  
while VA ≠  do 
=:v  node in AV /  most tightly connected to A  (i.e. 

),( vAω  is maximum); 
};{: vAA ∪=  

od; /*/* VA =  
=:s  2nd last node added to ;A  
=:t  last node added to ;A  

);},/{(: ttAC =∗  
 
 Given a ts −  cut C , v  is an active node if nodes v  and 

)(vpred  are on opposite sides of the cut C . Let vC  
denote the set of edges whose terminals are all in }{vAv ∪  
that are cut by C . 
 It is clear that the computed cut )},/{(:* ttVC =  is a 

ts −  cut of hypergraph H . It remains to show that 
)()},/{( CttV ωω ≤  for any ts −  cut C  of H  where 

1−= nas  and nat = . 
 Consider an arbitrary ts −  cut C  of H  where 1−= nas  
and nat = , we want to show that )()},/{( CttV ωω ≤ . 
Since }/{tVAt =  and CCt = , it is equivalent to prove that 

)(),( tt CtA ωω ≤ . We will prove a more general result in 
Lemma 1, which says that )(),( vv CvA ωω ≤  for any active 
node v . Note that t  is an active node because svprev =)( , 
and by assumption C  is a ts −  cut, so s  and t  are on 
opposite sides of C . Thus we are done if we can prove the 
lemma. 
 Lemma 1: For any ts −  cut C  of hypergraph H  where 

1−= nas  and nat = , we have )(),( vv CvA ωω ≤  for every 
active node v  in the sequence }{ ia . 
 Proof: Lemma will be proved by induction. Suppose we 
have a fixed ts −  cut C  where 1−= nas  and nat = . 

 Base case: If v is the first active node, then all nodes in 
vA  must be on one side of the cut C , and v  must be on 

the other side. So, any edge that has v  as one of its 
terminals and has all other terminals in vA  must be cut by 
C  and hence in vC . Thus we have )(),( vv CvA ωω ≤ . 
 Inductive step:  Suppose that the statement holds for 
active node u , and v  is the next active node after u . We 
will show that the statement also holds for active node v . 
By the definition of ),( vAvω , it can be written as the sum 
of these terms. 
  

),/,(),/(),(),( vAAAvAAvAvA uvuuvuv ωωωω ++=  (1) 
 
where ),/,( vAAA uvuω  is the total cost of all edges with v  
as a terminal that also have terminals in both uA  and 

uv AA / , but not in }{/( vAV v ∪ . As u  is the node most 
tightly connected to uA , we have ),(),( uAvA uu ωω ≤ . 
And by the induction hypothesis,  )(),( uu CuA ωω ≤ . So, 
 

≤++= ),/,(),/(),(),( vAAAvAAvAvA uvuuvuv ωωωω  
),,(),/()( vAAvAAC vuuvu ωωω ++≤     (2) 

 
 Because all nodes between u  and v  in the sequence are 
non-active nodes by the assumption, all nodes in uv AA /  
must be on one side of the C , while v  must be on the 
other side as it is active. So any edge with v  as a terminal 
and have at least one terminal in uv AA /  must be cut by 
C . Hence, any edge counted in ),/( vAA uvω  or 

),/,( vAAA uvuω  must belong to vC . And as uC  is a 
subset of vC , any edge counted in )( uCω  must belong to 

vC . Finally, notice that the set of edges counted in )( uCω , 
the set of edges counted in ),/( vAA uvω , and the set of 
edges counted in ),/,( vAAA uvuω  are mutually disjoint by 
their definitions. So, we have 

≤++≤ ),/,(),/()(),( vAAAvAACvA uvuuvuu ωωωω  
)( uCω≤ . From the above, we have )(),( vu CvA ωω ≤  for 

any active node v  with respect to the cut C . As C  can be 
any arbitrary ts −  cut of H , the lemma is proved. 
 We will illustrate how the fast minimum ts −  cut 
algorithm works with an example. Consider the hypergraph 
in Figure 6. Suppose node a  is picked as the arbitrary node 
to put into A  first. Then A  becomes }{a , and the node 
most tightly connected to A  is b  since 2)},({ =baω  
while 1)},({ =eaω  and 0)},({ =vaω  for any other node 
v . So the second node added to A  is b  and A  becomes 

},{ ba . Now, there are two nodes most tightly connected to 
A , namely, nodes c  and d , since 

1)},,({,3)},,({)},,({ === ebadbacba ωωω , and 
0)},,({ =fbaω . Suppose we choose to add node c  into 

A , then A  becomes },,{ cba . It can be checked that d  is 
the node most tightly connected to },,{ cba , hence node d  
is added to A  next, followed by node e , and finally node 

Figure 5: Both nodes d and g are tightly connected to 
A={a,b,c} but node f is not. 
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f . So, we get }){},,,,,({* fedcbaC = , es =  and ft = . 

The cut size of *C  is 3. It can be checked that *C  is indeed 
a minimum ts −  cut for es =  and ft = . 
 
 
 
 
 
 
 
 
 
 
 The global minimum cut of the hypergraph in Figure 6 is 
found by five minimum ts −  cut computations. Figure 7(a) 
shows the cut computed by the fast minimum ts −  cut 
algorithm assuming the nodes are added to A  in the order 

fedcba ,,,,, . The cut size is 3 and the cut separates e  and 
f . So nodes e  and f  are merged before the second 

minimum ts −  cut computation. Figure 7(b) shows the cut 
computed by the fast minimum ts −  cut algorithm 
assuming the nodes are added to A  in the order 

cdbaef ,,,, . The cut size is 4 and the cut separates d  and 
c . So nodes d  and c  are merged before the third 
minimum ts −  cut computation. Figure 7(c) shows the cut 
computed by the fast minimum ts −  cut algorithm 
assuming the nodes are added to A  in the order 

efabcd ,,, . The cut size is 7 and the cut separates a  and 
ef . So nodes a  and ef  are merged before the fourth 
minimum ts −  cut computation. Figure 7(d) shows the cut 
computed by the fast minimum ts −  cut algorithm 
assuming the nodes are added to A  in the order cdbaef ,, . 
The cut size is 7 and the cut separates b  and cd . So nodes 
b  and cd  are merged before the fifth minimum ts −  cut 
computation. Figure 7(e) shows the cut. And the cut size is 
3. The minimum of the five cuts computed above is a 
global minimum cut. In this example, the first and the fifth 
computed cuts are two different global minimum cuts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. IMPLEMENTATION AND COMPLEXITY 
 
 Let n  be the number of nodes in hypergraph H . Let p  
be the total number of terminals in all the edges of H . The 

fast minimum ts −  cut algorithm can be implemented to 
run in )log( nnpO +  time. In the fast minimum ts −  cut 
algorithm, we need to keep track of the value of ),( vAω  
for all node v  not in the current set A . And we have to 
find the node v  not in the current A  with the maximum 

),( vAω  value quickly. We can put the nodes into a priority 
queue using the value of ),( vAω  as the key of node v . 
When we add a node v  to A , we will remove it from the 
priority queue, and update ),( uAω  for any node u  that 
becomes the last terminal of an edge to remain outside of 
A  (i.e., u  and v  are terminals of the same edge e  and 

they are the last two terminals of e  yet to put into A ). We 
can identify such last node of an edge by keeping a counter 
for each edge. The value of the counter of an edge e  is set 
to the number of terminals of the edge initially, and is 
decremented by 1 each time a terminal of e  is added to A . 
Every time the counter for an edge e  becomes 1, we scan 
all the terminals of e  to find the last remaining node u  
outside A  and increase the value of ),( uAω  by )(eω . 
During the whole algorithm the total time spent for 
decrementing the counters and scanning when a counter 
becomes 1 is )( pO . And there are m  IncreaseKey 
operations where m  is the number of edges in H , and n  
ExtractMax operation. If we implement the priority queue 
using Fibonacci heaps, the amortized times for performing 
IncreaseKey and ExtractMax are )1(O  and )(log nO , 
respectively. Hence, the total running time of the fast 
minimum ts −  cut algorithm is 

)log()log( nnpOnnmpO +=++ . 
 We can compute a global minimum cut in a hypergraph 
in )log( 2 nnnpO +  time by applying the fast minimum 

ts −  cut algorithm 1−n  times. For VLSI circuits, usually 
cnp =  for some c  around 3 and 4. So the time becomes 

)log( 2 nnO . 
 

V. CONCLUSION 
 
 Because of the importance of the hypergraph minimum 
cut problem in finding good partitions for VLSI circuits, 
many researchers have studied this problem. Previously, 
the most efficient approach to find a minimum cut in a 
hypergraph is to transform the hypergraph into a flow 
network and then apply a flow-based algorithm on the 
network. However, in this paper we presented a fast non-
flow based approach to compute a minimum cut in the 
hypergraph directly. Our algorithm is a fast hypergraph 
minimum cut algorithm. 
 Finding a global minimum cut in a hypergraph is an 
important step towards finding better solutions for the 
complicated system partitioning problem. If the minimum 
cut is not balanced, we can use a repeated cut process as in 
[8] to grow or shrink a partition to the desired size without 
increasing the cut value too much. Yang and Wong [8] 
have shown that this technique works very well for finding 
balanced ts −  cuts in practice, so one can only expect to 
find better partitions when it is applied together with our 

Figure 6: A hypergraph. 
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Figure 7: Computing a global minimum cut. 
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algorithm since we do not require the use of a fixed pairs of 
nodes s  and t . 
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